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Abstract-The scatter in creep data is considered to be an inherent material property due to the
manufacturing process, The material behaviour under steady state creep is modeled as a three-dimensional
random process,

The statistical properties of the process are discussed. The probability density of the level of the
maxima is derived,

The statistical properties of the structural deformation rate for a simple model problem, viz. pure
bending of a beam lamina, are derived.

1. INTRODUCTION
The standard creep test refers to a specimen under constant load and at constant temperature.
The scatter in deformation rate and rupture time between different specimens is usually large.
The origin of the scatter may be global factors, such as random variation of load or
temperature. Hayhurst[l] has shown that the scatter can be reduced, but not eliminated,
through a rigorous control of the test situation. Local factors, leading to inhomogeneous creep,
may be random temperature along the specimen or random material properties.

Random material properties was already suggested by Hoff[2]. Assuming Norton's creep
law e= Bun to be valid, then the scatter may be attributed to random variations of Band n.
Comparison with creep tests may show if the variation of any of the parameters tends to
dominate. Cozzarelli and Huang[3, 4] considered n as a random process, due to a random
distribution of impurities, and B as another uncoupled random process, due to a random
temperature distribution. Some simple hyperstatic structures under constant load were
analysed. It was found that the deformation rate shows large random fluctuation. Broberg and
Westlund[5, 6] considered B as a random process due to the manufacturing process. Also here
the influence of the random material parameter on the stresses and deformation rates of some
simple structures was analysed. A volume effect was shown to exist, such that the variance of
the deformation rate decreases with increased structural redundancy and material volume.

Extreme values of random processes was first analysed by Rice [7]. He modeled an electric
noise current as a one-dimensional normal random process. The probability distribution of the
level of the maxima was derived. The creep rupture of specimens with random material
properties were analysed by Broberg and Westlund [8]. The rupture time was determined in
statistical terms. A volume effect was shown to exist such that the probability distribution of
the rupture time is strongly dependent on the material volume. Longuet-Higgins [9] modeled the
height of sea-waves as a two-dimensional normal random process. The probability distribution
of the maxima was derived. Nayak[lO] modeled the height of a rough surface as a two­
dimensional normal random process. The probability density of the level of the maxima and
other statistical properties were derived.

Starting with the statistical properties of creep tests and the work of Broberg and
Westlund[5, 6, 8] and Nayak[lO] the material properties under steady state creep will now be
modeled as a three-dimensional random process. The probability density of the level of the
maxima will be determined. As a simple model problem a beam lamina under constant bending
will be analysed. The curvature rate of a random cross-section will be determined in statistical
terms.

2. THE RANDOM MATERIAL MODEL
2.1 Statistical properties of the random process

The material properties in the metal cast may be considered random and isotropic. During
the metal forming process, such as rolling or extrusion, the material properties may become
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anisotropic. Chang and Grant[ll] observed different strain rates between the grains of a
coarse-grained aluminium specimen. The material properties on the microscopical scale cannot
be considered. A macroscopical representation, compatible with the continuum theory, must be
assigned. It is now assumed that the material properties are described by a stationary
three-dimensional random process.

Observations from a number of creep tests, see [12], indicates that the scatter in steady state
deformation rate is more or less independent of the applied load. This implies, assuming
Norton's creep law E= Bun to be valid, that the scatter is due to random variations in B rather
than in n. It is now assumed that the creep behaviour is described by Norton's creep law and
that the random behaviour is described by variations in B only.

The principal steady state creep rates are given by

(2.1)

where Ue and Sj are the Mises effective stress and the principal stress deviators at x =
(XI> X2, X3)' Moreover Eo and n are material constants and Un is a constant introduced for
dimensional purposes. The random material behaviour is described by the stationary random
process C(x).

Walles [13] gave the scatter between different specimens a thorough statistical treatment.
The steady state creep rates was shown to be close to log-normal distributed. It is now assumed
that the principal steady state creep rates are log-normal distributed. The distribution function
of Cis

with the expected value and variance

E[C] = 1 V[C] = es2 _1.

(2.2)

(2.3)

If the material behaviour shall be compatible with the ordinary small strain theory, then the
scatter must be small. When the variance of C tends to zero, then the log-normal distribution
tends to normal. The random process is conveniently reformulated as

C(x) = 1+aH(x)

with laHI ~ 1. The distribution function of aH is

with the expected value and variance

E[aH] =0 V[aH] =a.

(2.4)

(2.5)

(2.6)

For a complete knowledge of the random process the auto-correlation, or its Fourier
transform, must be known. The spectral density may, on physical grounds, be described as a
band-pass white noise. It is now assumed to be low-pass white noise, in the general anisotropic
case given by

(2.7)

with

(2.8)
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Here /3 is a material constant and k",t an4 k",2 are coefficients of material anisotropy, and u
denotes the unit step function. The auto-cotlelation is given by

The variable substitutions

(2.10)

yield

(2.11)

and

The solution of the radially symmetric integral is given by Sneddon [14]

R(Xo) =3(!!.)1/2,/3I2}fzo) =a:f (-. ri/~yr(5/2)
2 ro j=1l llrU +5/2)

with

(2.12)

(2.13)

(2.14)

Here J312 denotes the 3/2-order Bessel function and r denotes the gamma function.
The statistical properties of the process may be deduced from the moments of the spectral

density

Insertion of eqn (2.7) yields non-zero moments only for even p, q and r

(p+1) (q +1) (r+ 1)
_ 3a/3P+Q+r r r -2- r -2- r -2-

mpqr - 411' k~mk3m r(p +q; r+ 5) .

2.2 Extreme values 0/ the random process
An extreme value analysis is most conveniently carried out on the normal process

L(x) =In C(x)

or in the ordinary small scatter formulation

L(x) = aH(x).

A stationary point will be an extremum point if the quadratic form (summation rule)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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is either positive or negative definite. Here A denotes the matrix of second derivatives of L.
The condition for a maximum is that the invariants of the matrix

12= [(A;J2 - AijA;J/2 > 0

13 = jAI < o.

It is convenient to introduce, see [10],

(2.20)

The expected number of maxima of level A7 = A, in the volume d V, is given by

E[M(A)] d V = IIIIII dA I dA 2dA3 dA 4 dA sdA 6III dAg dA 9 dAIOP(A). (2.22)
R ~v

Here P denotes the joint probability density. The region of integration R is given by eqn (2.20).
The increments of the first derivatives in d V are

(2.23)

According to the central limit theorem the joint probability is

(2.24)

where the elements of the matrix of covariances are given by

(2.25)

The matrix may be expressed in the moments of the spectral density

m400 m310 m220 m211 m202 m301 -m200 0 0 0
m220 m130 ml21 m1l2 m211 -milO 0 0 0

m040 m031 m022 ml2l - m020 0 0 0
m022 mOI3 mll2 -mOil 0 0 0

S= SYMMETRIC mOO4 mlO3 - mOO2 0 0 0 (2.26)
m202 - mlOl 0 0 0

mooo 0 0 0
m200 milO mlOl

m020 mOil

mOO2

The expected number of all maxima is given by

E[8(00)] = (21Tf5ISI- 1/2 IIIIff dA I dA 2 dA 3 dA4 dA s dA6 L: dA 7

R

x IAI exp( - Si/ A;Aj2).

The probability density of maxima of level A is finally calculated as

E[M(A)]
Pm(A) = E[8(00)]'

(2.27)

(2.28)
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Insertion of the moments of the spectral density eqn (2.16) and the new variables

279

11 = a-I/2{3-2)'t 12= a-1/2k-;"~{3-2A2 13= a-1/2k-;,,22{3-2 A3

14= a-1/2k-;"~k-;,,13{3-2A4 15= a-1/2k-;,,23{3-2 A5

16=a-1/2k-;,,13{3-2A6 17=a-1/2A7 Ig=a-1/2{3-IAg

19= a-1/2k-;"~{3-1'\9 110 = a -1/2k-;"~{3-1,\1O (2.29)

followed by matrix inversion gives the expected number of maxima of level 17 = I

1(35)5 fO f(l1
1
3)1/2 fO f(l3

1
5)1/2 fO f(l115)1/2

E[M(l)] = 196 217" a-1/2km2km3{33 -00 dl1 _00 d/2 -00 d/3 -00 d/4 -00 d/5 -00 d/6

X 1/,/3/5- ll/l- 13/6
2- 15/2

2- 212/4/61exp [ - i(2111
2 + 14/,/3

+14/1/5+ 14/11+ 28/l + 2113
2 + 14/3/5+ 14/31+ 28/1 + 211l

+ 14151+28/6
2+512)J. (2.30)

Equation (2.30) is most conveniently solved by numerical integration. The probability density of
the maxima of level '\, see eqn (2.28), is independent of the material anisotropy.

In order to achieve an analytical solution a simple model problem will now be considered.

3. APPLICATION TO A MODEL PROBLEM RESTRICTED TO TWO DIMENSIONS
3.1 The model problem

A beam lamina under constant bending will be analysed. Only the properties of a random
cross-section X3 will be considered, see Fig. 1. The index X3 is hereafter dropped. The analysis
may well be extended to a beam of finite length, as considered by Huang and Cozzarelli[4] in
the limited case of random material parameters along the neutral axis only.

Equilibrium of the beam lamina requires

(3.1)

The width and height of the cross-section are expressed as

(3.2)

where kg is a coefficient of geometry.
For small geometrical changes the strain of the lamina is

(3.3)

where K is the curvature of the center-plane.

1/)t (x)l 281

/10 x1 282

x2
Fig. 1. Model problem.
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The constitutive eqn (2.1) for the uni-axial stress state is

E(X) = EO[ IT;~)r[1 +aH(x»). (3.4)

In order to take into account also compressive stresses, n is restricted to be an odd integer.
The solution will be carried out in the new variables

1/1 = xdB 1/2 = x21kgB

s = ITIITn Ii = kgBKI Eo.

From eqns (3.3) and (3.4) follows

(3.5)

Insertion in eqn (3.1) gives the curvature rate

A series development of the order 0(a 3
) gives

where

(3.6)

(3.7)

(3.8)

(3.9)

3.2 The statistical analysis
The expected value and variance of the curvature rate may be deduced from the cor­

responding properties of the integrals ~ of eqn (3.9). Insertion of eqn (2.6) and (2.9) gives

Here Wn is a structural geometry factor, deduced by insertion of eqn (2.13) with X30 = 0, thus

where

(3.14)

and

(3.15)
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The dependence of WII upon n can be shown to be very small. A good approximation for all
values of n, with an error less than 5%, is

(3.16)

Insertion of the variable transformations

(3.17)

and the series expansion of J3/2 eqn (2.13) followed by partial integration on SI and S2 yield

(3.18)

Reversion of the order of integration and summation gives

(3.19)

W =72!(.~ l~f(5/2)b2j± (j)/C'I
j=o].f(J +5/2) 1=0 1

2/2+1+1
x [2(j - I) + 2][2(j -l) + 1](21 + 1)(21 + 2)(21 + 3)(21 + 6)

which is calculated for two values of Ie, see Fig. 2.
Finally the expected value and variance of the curvature rate follows as

. ( 4n )-"[ ... n + 1 2
E[h]=m" 2n+l 1-2"na (l-W)]+O(a) (3.20)

(3.21)

The scatter of the structural deformation rate is seen to be strongly dependent on the material
volume and the structural redundancy.

3.3 The probability density of maxima
The extreme value density of a radom x3-surface follows from part 2.2 above by making all

derivatives on X3 equal to zero. The expected number of maxima of level A7 = A, per unit area,
is given by

(3.22)

b=]38

k =kgkmz

oa'::'-'--;:Q2~--.l.-~,----l----L_-J'0
b

Fig. 2. Structural geometry factor.
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m40 0 m22 - m20 0 0
m22 0 0 0 0

S= SYMMETRIC m04 -m02 0 0
(3.23)

moo 0 0
m20 0

mOl

Insertion of the moments of the spectral density eqn (2.16) with r = 0 and the new variables

110 = a-1/2/3-2AI 12 = a-1/2k-;;'~/3-2A21

130 = a -112 k-;;.22/3-2A
3

17 = a -1/2A
7

followed by matrix inversion yield

where

The linear transformation of variables

gives

f
o I-II f(/I2-/32)1/2

E[M(l)] = 2co -x dll /1 d/3 -x d/i/1
2
-/2

2
-/3

2
)

Xexp[ - ~(35/12 + 14/11+2112
2 +2113

2 +2f)J.

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Partial integration of eqn (3.28) gives the expected number of maxima of level I, erf denotes the
error function,

and the expected number of all maxima

where

E[S(oo)] = CI (3.30)

(3.31)

The probability density of the maxima of level I follows from eqn (2.28), it is drawn in Fig. 3.
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Fig. 3. Probability density of maxima of level L.

4. DISCUSSION
The material behaviour under steady state creep has been modeled as a stationary three­

dimensional random process. The randomness in Norton's creep law has been described as a
variation in one parameter only. A more sophisticated model of scatter should take into
consideration a variation in both parameters. The random material behaviour may also be
coupled to a more realistic constitutive equation.

The random process has been assumed to be log-normal distributed. This is consistent with
a normal distributed random temperature with small variations. The structural deformation
rates, deduced by integration of the log-normal local material parameter, will not be log-normal
distributed. The small scatter case of the normal distributed local material parameter will be
consistent with normal distributed structural deformations.

The extreme value analysis has been coupled to a definite spectral density, viz. anisotropic
low-pass white noise, in order to simplify the analysis. The probability density of the level of
the maxima is seen to be independent of the anisotropy.

In order to achieve analytical solutions a model problem, restricted to two dimensions, has
been considered. A volume effect has been shown to exist, such that the influence of local
variation of the material parameter on the structural behaviour decreases with increased
material volume and structural redundancy.

Experiments sufficient to determine how large part of the creep data scatter that really is
due to random material properties has yet not been conducted.
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